

Table of Contents
Introduction. 1

How to read this book . 1
Prerequisites . 2

Hardware and Software. 2
What we’re going to build . 3

1. Getting started . 4
1.1. The prerequisites . 4
1.2. Creating the Rails app . 5
1.3. Pushing to GitHub . 8
1.4. Deploying to production . 8

1.4.1. A production config for Puma. 8
1.5. Creating the iOS app. 17
1.6. Creating the Android app. 22
1.7. Conclusion . 28

2. What is Hotwire? . 29
2.1. Turbo. 29

2.1.1. Turbo Drive. 30
2.1.2. Turbo Frames . 30
2.1.3. Turbo Streams . 33
2.1.4. Page refreshes using morphing. 36
2.1.5. Turbo Native . 40

2.2. Stimulus . 40
2.3. Strada . 44
2.4. Conclusion . 45

3. Users and sign ups. 47
3.1. Modelling Users and Organizations . 47

3.1.1. Model classes and database tables . 49
3.1.2. Validations and relationships . 50
3.1.3. Strip extraneous spaces . 53
3.1.4. Secure passwords . 54

3.2. Rails and I18n . 58
3.2.1. Localized strings in views and controllers 59
3.2.2. Localization in Active Record . 59
3.2.3. Folder structure for locale dictionary . 61
3.2.4. Localizing the page title . 62

3.3. The sign up form . 64
3.3.1. Setting up the routes, controllers, and views 65
3.3.2. Rendering form input errors . 74
3.3.3. Controller testing . 79

3.4. Conclusion . 82
3.4.1. Exercises . 83

Thanks for for downloading the preview. 84

Introduction
It’s 2024. Building an app solely for The Web doesn’t quite cut it any more.
iOS and Android apps are essential for a successful SaaS product.

Hybrid apps are unpopular because they are believed to degrade the user
experience. While that may have been accurate in the past, mobile
performance has now reached a point where hybrid apps, when done right,
can be truly delightful.

There’s also the massive advantage of writing the views once, for web, and
then reusing them in the native apps. This is a huge competitive edge.

Hotwire provides the tools to build high-fidelity web apps without a
monolithic front-end framework like React. It also gives us native extensions
using which we can build iOS and Android wrappers for web apps, with the
ability to go fully native when required. In this book, we’ll build an
application for Web, iOS, and Android without losing our sanity!

How to read this book
I recommend working through this book rather than reading it to get the
most out of it. Keep this book open alongside your development
environment and follow along by typing out the code instead of copying it
across. Your mileage may vary though and it’s best to follow whatever
method you’re comfortable with.

If you’re not interested in the native side of things, you can skip the chapters
and sections related to iOS and Android. They build on top of the web app so
you won’t miss anything. The iOS and Android apps are totally independent
of each other as well, so you can choose only one of those platforms if you
wish. For example, you might want to skip iOS if you haven’t got a Mac.

1

https://hotwired.dev

Prerequisites
This book assumes a basic understanding of programming for the web,
object-oriented programming, Ruby, Rails, modern JavaScript, HTML, CSS,
and version control using Git. If you’re familiar with basic OOP principles
like classes and inheritance, setting up Active Record models and
associations, defining Rails routes to connect to a controller action, and
rendering a view from a controller action; you’ll be able to follow along just
fine.

If any of the above terms didn’t make sense and you need to get up to speed,
I recommend completing The Ruby on Rails Tutorial by Michael Hartl
before starting this book.

The iOS app will be written in Swift and the Android app in Kotlin. You don’t
need any knowledge of these languages or the native APIs. We’ll cover all
that in this book. Although any familiarity with these languages will be
beneficial!

Hardware and Software

iOS apps can only be developed on a Mac. If you want to work through the
native iOS sections, you’ll need a Mac with Xcode installed. For the Android
app, you’ll need Android Studio which works on Mac, Windows, and Linux.

You’ll also need Ruby 3, Rails 7, Node.js 16 and PostgreSQL 14 installed on
your local machine. We won’t be covering how to set up your local
development environment.

I recommend using a Mac or Linux machine to work through this book. If
you’re using a Windows machine, installing an Ubuntu VM might be worth
doing.

2

https://www.railstutorial.org/book

What we’re going to build
We’ll build a neighbourhood marketplace app à la Gumtree or Craigslist.
We’ll call it Piazza. The bulk of the work will be on web, and we’ll use
Hotwire’s native extensions for the iOS and Android apps.

The web app will need to be fully responsive all the screens will be reused in
the mobile apps. Since responsive design could be a book in its own right,
we’re going to use a highly technical concept known as cheating. Bulma is a
CSS framework and UI Kit that gives us all we need so we’ll use that to
ensure our app looks great and is responsive!

Let’s dive in!

3

https://gumtree.com
https://craigslist.org
https://bulma.io

Chapter 1. Getting started
First things first, we need to create repositories for the Rails app and native
apps. We’ll create individual repositories for all 3 to keep their sizes in
check.

1.1. The prerequisites
Verify that the right versions of Ruby and Rails are installed. You’ll need at
least Rails 7.1 and Ruby 3.2 for this book.

$ rails -v
Rails 7.1.3.2

$ ruby -v
ruby 3.2.2 (2023-03-30 revision e51014f9c0) [arm64-darwin22]

If you’ve got older versions installed, you can install Rails 7 using:

$ gem install rails -v 7.1.3.2

To manage your Ruby version, I recommend setting up rbenv.

Node.js and Yarn are required to transpile JavaScript and install frontend
libraries.

$ node -v
v20.1.0

$ yarn -v
1.22.19

4

https://github.com/rbenv/rbenv

You’ll need Node.js v16 or newer to avoid issues with this project.
Installation instructions can be found at https://nodejs.org/en/download/. If
you haven’t got Yarn installed, run the following command after installing
Node.

$ npm install --global yarn

Ensure you have PostgreSQL and Foreman (used to orchestrate multiple
processes in development) installed.

$ foreman -v
0.87.2

$ postgres --version
postgres (PostgreSQL) 14.2

Foreman can be installed by running:

$ gem install foreman

If you don’t have PostgreSQL installed, do a search using your favorite
search engine for installation instructions for your platform. If you have
Homebrew installed, you can run:

$ brew install postgresql

1.2. Creating the Rails app
In the Rails app, we’ll use ESBuild to transpile and bundle JavaScript[1] and
Bulma for CSS. Propshaft will be used to deliver assets. The database will be
PostgreSQL both locally as well as in production.

5

https://nodejs.org/en/download/
https://brew.sh
https://esbuild.github.io
https://bulma.io

Why transpile and what does Propshaft do?

Transpiling JavaScript allows us to use next-generation features that
aren’t yet available in all browsers. This means we can write code that’s
more concise and readable with the trade off that we have an additional
build step. Given the ease of use of ESBuild, and the fact that we mostly
won’t even notice it’s there, I feel this is a worthy tradeoff.

Vanilla CSS can be tedious to write which is why preprocessors like
Sass, Less, and PostCSS have cropped up over the years. Using a
preprocessor, writing CSS becomes simpler and DRYer before it’s
transpiled into syntax that browsers can understand. We’re using the
Bulma library for reasons stated earlier and that’s written in Sass, so
we’ll use the Sass preprocessor in Piazza.

Finally, Propshaft. Before an asset is delivered to the browser, it should
be stamped with a digest. This means it’s run through a hash function to
produce a unique string (or digest) which is then added to the filename.
This way, assets can be cached aggressively because the filename
changes when the asset changes, meaning the latest asset is always
retrieved.

You may be acquainted with the incumbent Sprockets powered asset
pipeline in Rails. Propshaft is a simpler alternative designed specifically
to deliver assets rather than transpile them as well.

Run the command below to create the Rails app:

$ rails new piazza -j esbuild --css bulma -a propshaft -d postgresql

This will create the app in a folder called piazza. We’ll also be creating
apps called piazza on Android and iOS. To allow us to keep all 3 apps in the
same folder, rename the folder containing the Rails app.

6

https://sass-lang.com
https://lesscss.org
https://postcss.org
https://en.wikipedia.org/wiki/Hash_function

$ mv piazza piazza-web

Now we can start the app.

$ cd piazza-web
$ bin/rails db:prepare
$ bin/dev

If something goes wrong while preparing the database, you may not have
PostgreSQL running on your local machine so it’s worth checking that.

bin/dev uses Foreman to run the Rails server and processes to watch the
CSS and JS files so they’re recompiled automatically when changed. The
commands to start these processes are defined in Procfile.dev.

The Rails server should now be running and you’ll see the page in Figure 1 at
http://localhost:3000.

Figure 1. The default Rails welcome page

7

http://localhost:3000

1.3. Pushing to GitHub
It’s wise to host our source code on a cloud VCS provider. It acts as a backup
in case something goes wrong with our development machine and also
makes it easy to trigger deployments to production.

GitHub is the most popular code hosting provider. Create an account on
GitHub or login if you’ve already got one. Create a new repository called
piazza-web.

Once you’ve done that, follow the on screen instructions to push an existing
repository from the command line.

1.4. Deploying to production
Now that we have a functioning Rails app on GitHub, let’s deploy it to
production. It’s good practice to deploy frequently so any problems are
caught as soon as they’re introduced.

We’ll be deploying to Render.com which is a Platform-as-a-service hosting
provider similar to Heroku. It provides several benefits over Heroku such as
HTTP/2[2] and has a great free tier[3].

Render has the concept of services. Each app comprises of one or more types
of service. We’ll need a web service and a database to deploy our app. Both
these service types are available under the free tier.

If you’re using a Mac, the app needs to be Linux enabled by running:

$ bundle lock --add-platform x86_64-linux

1.4.1. A production config for Puma

The default configuration for the Puma web server that Rails gives us out of
the box is fine for development. In production, some changes are needed to

8

https://en.wikipedia.org/wiki/Version_control
https://github.com
https://github.com
https://github.com/new
https://render.com
https://en.wikipedia.org/wiki/HTTP/2

improve performance.

Make a copy of the default Puma configuration.

$ mkdir config/deploy
$ cp config/puma.rb config/deploy/puma.rb

Copy the contents of Listing 1 into the new config file. The highlighted lines
show the changes the default config.

Listing 1. The production Puma configuration (config/deploy/puma.rb)

Puma can serve each request in a thread from an internal thread
pool.
The `threads` method setting takes two numbers: a minimum and
maximum.
Any libraries that use thread pools should be configured to match
the maximum value specified for Puma. Default is set to 5 threads
for minimum
and maximum; this matches the default thread size of Active Record.
#
max_threads_count = ENV.fetch("RAILS_MAX_THREADS") { 5 }
min_threads_count = ENV.fetch("RAILS_MIN_THREADS") {
max_threads_count }
threads min_threads_count, max_threads_count

Specifies the `worker_timeout` threshold that Puma will use to wait
before
terminating a worker in development environments.
#
worker_timeout 3600 if ENV.fetch("RAILS_ENV", "development") ==
"development"

Specifies the `port` that Puma will listen on to receive requests;
default is 3000.
port ENV.fetch("PORT") { 3000 }

Specifies the `environment` that Puma will run in.
#

9

environment ENV.fetch("RAILS_ENV") { "development" }

Specifies the `pidfile` that Puma will use.
pidfile ENV.fetch("PIDFILE") { "tmp/pids/server.pid" }

Specifies the number of `workers` to boot in clustered mode.
Workers are forked web server processes. If using threads and
workers together
the concurrency of the application would be max `threads` *
`workers`.
Workers do not work on JRuby or Windows (both of which do not
support
processes).
#
workers ENV.fetch("WEB_CONCURRENCY") { 4 }

Use the `preload_app!` method when specifying a `workers` number.
This directive tells Puma to first boot the application and load
code
before forking the application. This takes advantage of Copy On
Write
process behavior so workers use less memory.
#
preload_app!

Allow puma to be restarted by `bin/rails restart` command.
plugin :tmp_restart

We need to tell the app where to find the production database. Open
config/database.yml and scroll down to the production key which
should look like Listing 2

Listing 2. The existing production database configuration
(config/database.yml)

...

production:
 <<: *default

10

 database: piazza_production
 username: piazza

NOTE

For simplicity and brevity, code snippets will sometimes have
a commented ellipsis as seen in Listing 3 (# …). This signifies
omitted code not currently relevant and should not be copied
literally.

Change the lines in Listing 2 to Listing 3.

Listing 3. The Render production database configuration
(config/database.yml)

...

production:
 <<: *default
 url: <%= ENV['DATABASE_URL'] %>

Before the app is deployed, the database migrations need to be run and
JavaScript and CSS compiled . Let’s write a script to do that.

$ touch bin/render-build.sh

Fill it in with Listing 4.

Listing 4. The build script (bin/render-build.sh)

#!/usr/bin/env bash
exit on error
set -o errexit

bundle install
bundle exec rake assets:precompile
bundle exec rake assets:clean
bundle exec rake db:migrate

11

We also need to make the script executable.

$ chmod a+x bin/render-build.sh

Lastly, we need to define the Render services needed to run our app. We can
do this in code using Render’s YAML specification for services[4] known as
Blueprints.

Create a file in the project root to define the infrastructure.

$ touch render.yaml

Define a web service and database on the free tier as demonstrated in Listing
5.

Listing 5. Define the services needed for Piazza (render.yaml)

services:
 - type: web
 name: piazza-web
 env: ruby
 plan: free
 numInstances: 1
 buildCommand: ./bin/render-build.sh
 startCommand: bundle exec puma -C config/deploy/puma.rb
 envVars:
 - key: DATABASE_URL
 fromDatabase:
 name: piazza-db
 property: connectionString
 - key: RAILS_MASTER_KEY
 sync: false

databases:
 - name: piazza-db
 plan: free
 postgresMajorVersion: 14

12

The contents of Listing 5 should be self-explanatory. We’re defining a web
service along with a build and start command, and a database.

Commit and push the code so we can deploy it.

$ git add .
$ git commit -m "Set up Render deployment"
$ git push

Create an account at Render.com or log in if you already have one. Once
logged in, go to your Account Settings as shown in Figure 2.

Figure 2. Go to your Render account settings

On the account settings page, connect your GitHub account.

13

https://render.com

Figure 3. Connect Render to GitHub

After GitHub’s been connected, we can point Render to our repository and
blueprint. Create a new blueprint as shown in Figure 4.

Figure 4. Create a new Blueprint on Render.com

You’ll then see the page in Figure 5. Find your piazza-web repository and
click it.

14

Figure 5. Connect the piazza repository to Render

This will take you to the page in Figure 6. Enter a name for your service
group, I’ve put in Piazza. You’ll also need to set the RAILS_MASTER_KEY
environment variable to decrypt secure data on the server. Open
config/master.key in your local Rails project and copy its contents to
field in the Render dashboard. Then click Apply.

Figure 6. Deploy the blueprint on Render

15

Render will create a web service and database. This could take a few minutes
to complete. After it’s done, you’ll be able to see its Deployed status in the
Render dashboard.

Figure 7. The Render dashboard once the services have been deployed

If you click on the piazza-web service, it’ll take you to the service details
page where you’ll see a URL for this service as shown in Figure 8. Your URL
will be different from the one in the image.

Figure 8. The URL for the web service

Clicking this link will take you to the app, where you’ll see an error as we
haven’t built anything yet. The Rails welcome page is not visible in
production. Every time we push code to the main branch, Render will
automatically deploy it.

That completes the setup for the Rails app.

16

1.5. Creating the iOS app
To create the iOS project, you’ll need a Mac with Xcode installed. If you don’t
have it installed, you can download it for free from the Mac App Store.

Open Xcode and select Create a new Xcode project as shown in Figure 9.

Figure 9. The Xcode splash screen

On the next screen, select iOS from the platforms tab and App as the
template. Click Next.

17

Figure 10. The Xcode template selector

Enter Piazza as the Product Name. The organization identifier is
conventionally the developer’s website in reverse DNS notation[5].

I’ve chosen com.radioactivetoy as shown in Figure 11 to denote the publisher
of this book. Choose Storyboard from the Interface dropdown menu. Ensure
Use Core Data is unchecked and Include Tests is checked.

18

Figure 11. The iOS project details

Click Next and select the location for your iOS project. Place it in the same
folder as the Rails app. After your project’s been created, rename its
containing folder from piazza to piazza-ios.

Now that the iOS project is set up, we need to add the Turbo and Strada iOS
packages to the project which area Hotwire’s native libraries. We’ll get into
the details of what these do in the next chapter.

We’ll use the native Swift Package Manager to manage dependencies. Select
File → Add Packages and you should see the dialog box in Figure 12.

19

https://swift.org/package-manager/

Figure 12. The dialog box to add Swift packages

In the text field in the top right corner, enter:
https://github.com/hotwired/turbo-ios

Select turbo-ios from the list of packages. Set the Dependency Rule to Up
To Next Minor Version and enter 7.0.1 in the left text field as
demonstrated in Figure 13.

20

https://github.com/hotwired/turbo-ios

Figure 13. Add the turbo-ios package to the project

Click Add Package and you’ll see a confirmation screen. Click Add Package
again.

Open the Add packages dialog once again to add Strada. In the text field in
the top right corner, enter:
https://github.com/hotwired/strada-ios

Select strada-ios from the list of packages. Set the Dependency Rule to
Up To Next Minor Version and enter 1.0.0-beta2 in the left text field.

21

https://github.com/hotwired/strada-ios

Figure 14. Add the strada-ios package to the project

NOTE
1.0.0-beta2 is the latest version at the time of writing. I
recommend checking the Releases page for the latest current
version and entering that.

This completes the initial setup of the iOS project! It’s worth committing our
code at this point.

$ git add .
$ git commit -m "Complete initial setup of Hotwire"

Set up a GitHub repository for this project as well and push your code to it.

1.6. Creating the Android app
Developing Android apps requires Android Studio. If you haven’t got it
installed, you can download it for free from: https://developer.android.com/
studio.

22

https://github.com/hotwired/strada-ios/releases
https://developer.android.com/studio
https://developer.android.com/studio

Open Android Studio and select New Project.

Figure 15. Create a new Android app project

Choose the Empty Activity template from the Phone and Tablet category in
the template selector. Click Next.

23

Figure 16. The Android Studio template selector

On the project details page shown in Figure 17, enter Piazza for Name. Enter
a unique package name in the form of a reverse URL. I’ve entered
com.radioactivetoy.piazza to denote the publisher of this book.

Create a folder called piazza-android alongside your piazza-web and
piazza-ios folders and save the project there.

Select API 24: Android 7.0 (Nougat) for the Minimum SDK. This is required
by Turbo and Strada, which are Hotwire’s native packages.

24

Figure 17. Enter the details for the Android project

Click Finish once you’ve entered the above information and your project will
be created.

The last step is to add the Turbo and Strada Android libraries, along with
some other compatibility dependencies to the project. Open the
build.gradle.kts file for the app’s module as shown in Figure 18.

25

Figure 18. The build.gradle.kts file for our app

Scroll down to the dependencies declaration and add the library as
demonstrated in Listing 6.

Listing 6. Add the required packages to Piazza (app/build.gradle.kts)

plugins {
 id("com.android.application")
 id("org.jetbrains.kotlin.android")
 kotlin("plugin.serialization") version "1.8.10"
}

// ...

dependencies {
 implementation("androidx.core:core-ktx:1.9.0")
 implementation("androidx.appcompat:appcompat:1.5.1")
 implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.1")
 implementation("androidx.activity:activity-compose:1.7.0")
 implementation(platform("androidx.compose:compose-bom:2023.03.00"))
 implementation("androidx.compose.ui:ui")

26

 implementation("androidx.compose.ui:ui-graphics")
 implementation("androidx.compose.ui:ui-tooling-preview")
 implementation("androidx.compose.material3:material3")
 implementation("androidx.browser:browser:1.4.0")
 implementation("dev.hotwire:turbo:7.0.+")
 implementation("dev.hotwire:strada:1.0.0-beta3")
 implementation("org.jetbrains.kotlinx:kotlinx-serialization-
json:1.6.0")

 testImplementation("junit:junit:4.13.2")

 androidTestImplementation("androidx.test.ext:junit:1.1.5")
 androidTestImplementation("androidx.test.espresso:espresso-
core:3.5.1")
 androidTestImplementation(platform("androidx.compose:compose-
bom:2023.03.00"))
 androidTestImplementation("androidx.compose.ui:ui-test-junit4")

 debugImplementation("androidx.compose.ui:ui-tooling")
 debugImplementation("androidx.compose.ui:ui-test-manifest")
}

We also need to update the Project level build.gradle.kts file to enable
a plugin required by Strada.

Listing 7. Enable the serialization plugin (build.gradle.kts)

// Top-level build file where you can add configuration options
common to all sub-projects/modules.
plugins {
 id("com.android.application") version "8.1.3" apply false
 id("org.jetbrains.kotlin.android") version "1.8.10" apply false
 kotlin("plugin.serialization") version "1.8.10"
}

Once you’ve added those lines, Android Studio will prompt you to Sync the
project. Go ahead and sync it.

That completes the setup for the Android app! Initialize a git repository for

27

the project and commit the code.

$ git init
$ git add .
$ git commit -m "Set up android app with Hotwire"

Set up a GitHub repository for the Android project and push your code to it.

1.7. Conclusion
Well that was a bit of a slog, but we’re up and running on all 3 platforms
now! The Rails app has been created and deployed to Render and the two
native app projects have been set up with their Turbo Native extensions.

Next, let’s take a closer look at what Hotwire actually is.

[1] Rails 7 uses importmaps by default to avoid the "build" step for JavaScript. However, bundling JavaScript is still a good idea. This
Twitter thread from Konnor Rogers elaborates: https://twitter.com/RogersKonnor/status/1425922887161090055.

[2] A detailed comparison of the benefits of Render in comparison to Heroku can be found here: https://render-web.onrender.com/
render-vs-heroku-comparison.

[3] See the limitations of Render’s free tier: https://render.com/docs/free.

[4] Defining our deployment infrastructure as code has the advantage of being tracked in version control along with our code. So all
changes are tracked and any new issues introduced will be easier to find. See Render’s complete YAML spec: https://render.com/docs/
blueprint-spec.

[5] Some guidance on iOS organization identifier can be found here: https://stackoverflow.com/a/35102666

28

https://github.com/WICG/import-maps
https://twitter.com/RogersKonnor/status/1425922887161090055
https://render-web.onrender.com/render-vs-heroku-comparison
https://render-web.onrender.com/render-vs-heroku-comparison
https://render.com/docs/free
https://render.com/docs/blueprint-spec
https://render.com/docs/blueprint-spec
https://stackoverflow.com/a/35102666

Chapter 2. What is Hotwire?
Hotwire is a suite of frontend libraries that enable us to build rich, high-
fidelity, and modern web applications without using monolithic frontend
frameworks like React or Vue. In fact, we’ll write very little JavaScript
ourselves!

Hotwire also provides native extensions for iOS and Android using which we
can build native shell apps which reuse the views from the web app.

The libraries that constitute Hotwire are Turbo, Stimulus, and Strada.

Turbo is the nucleus of Hotwire. It speeds up page changes and form
submissions. It also allows us to divide complex pages into frames and then
make partial page updates confined to those frames. All this without writing
a single line of custom JavaScript!

The core of the native extensions for iOS and Android build on top of Turbo,
known as Turbo Native. More on this in the next section!

Stimulus is a lightweight mechanism using which we can attach pieces of
JavaScript logic to HTML elements in the form of a controller. It’s meant for
use cases where custom JavaScript is required; for example, to hide or show
a particular element on the click of a button.

Strada augments Turbo Native by bridging native code with the web app
using JavaScript. It standardises an interface to communicate between the
web app and the native app allowing us to render fully native components
that act as a proxy for web elements.

Let’s dissect each one of Hotwire’s constituent libraries.

2.1. Turbo
Turbo is the successor to Turbolinks which was included in Rails prior to v7.

29

https://hotwired.dev
https://github.com/turbolinks/turbolinks

It was initially written in TypeScript and then refactored to JavaScript for v8.

Turbo itself is made up of 4 parts: Turbo Drive, Turbo Frames, Turbo
Streams, and Turbo Native.

2.1.1. Turbo Drive

Turbo Drive speeds up form submissions and navigation between pages by
eliminating the need for full-page reloads. One of the main performance
bottlenecks when loading a webpage is downloading and parsing the
JavaScript and CSS. This happens for every single visit to every single page in
an application even though JavaScript and CSS bundles seldom change.
Imagine the performance win if these bundles could be downloaded and
parsed only once! That’s exactly what Turbo Drive enables.

It intercepts every link click and form submission and performs the HTTP
request in the background using fetch. It then replaces the content of the
<body> tag on the current page with that of the new page loaded in the
background. The new page’s <head> is merged in with the existing <head>.

The browser’s URL bar is updated with the new location ensuring the
functionality of the Back button is preserved.

2.1.2. Turbo Frames

A Turbo Frame is a part of a web page that can be updated in isolation from
the rest of the web page. All link clicks and form submissions made from
within a Turbo Frame will result in only that particular Frame being updated
with the response, rather than the full page. Using frames, a complex page
can be decomposed into independent parts.

Let’s take a look at some code to see how this works. A Turbo Frame is
declared using the <turbo-frame> tag with a unique ID. The below snippet
demonstrates a Turbo Frame containing a list with a refresh link.

<body>

30

https://javascript.info/fetch

 <!-- ... -->

 <turbo-frame id="comments">

 A comment
 Another comment

 Refresh
 </turbo-frame>

 <!-- ... -->
</body>

When the refresh link is clicked, Turbo will make a GET request to
/comments. Since the navigation happened from inside a Turbo Frame, it
will expect the response to contain a <turbo-frame> with the ID
comments. Turbo will then update the Frame with the contents of the
corresponding Frame returned in the response, leaving the rest of the page
untouched.

Links inside a Frame can be designated to behave as normal links and
trigger a full page visit. This is done using the data-turbo-frame
attribute.

<body>
 <!-- ... -->

 <turbo-frame id="modal">
 <p>
 <!-- ... -->
 </p>

 <!-- This link will trigger a full page visit -->
 Go back
 </turbo-frame>

 <!-- ... -->

31

</body>

Conversely, links outside a Frame can be designated to behave as if they
were within a Frame using the same data-turbo-frame attribute.

<body>
 <!-- ... -->

 <turbo-frame id="comments">

 A comment
 Another comment

 </turbo-frame>

 <!-- This link will only update the above Turbo Frame -->
 Refresh
 <!-- ... -->
</body>

Turbo Frames can also be loaded remotely.

<body>
 <!-- ... -->

 <turbo-frame id="comments" src="/comments">
 </turbo-frame>
</body>

The above Frame will be loaded from /comments as soon as it’s added to the
DOM. The response will still need to contain a <turbo-frame> with a
matching ID.

To enhance performance, a loading="lazy" option can be defined on
remotely loaded Frames. This way, the Frame won’t be loaded until it’s
visible to the user.

32

<body>
 <!-- ... -->

 <turbo-frame id="comments" src="/comments" loading="lazy">
 </turbo-frame>
</body>

Using Turbo Frames, we can update specific self-contained parts of the page
with ease and without writing any custom JavaScript!

2.1.3. Turbo Streams

Turbo Streams enable us to perform a series of CRUD actions on specific
DOM elements via a <turbo-stream> tag.

As soon as a <turbo-stream> tag is added to the document, Turbo will
execute it and perform the alteration it defines. These tags can be delivered
in a variety of methods such as an HTTP response, WebSocket, or Server
Sent Events. We’ll cover some of these methods while building Piazza.

A typical Turbo Stream tag looks like:

<turbo-stream action="append" target="comments">
 <template>
 <li id="comment_1">
 This li will be appended to the element
 with the DOM ID "comments".

 </template>
</turbo-stream>

As the above example illustrates, a <turbo-stream> must have an action
and target attribute. The action will be performed on the element with
the ID defined in target. It must contain a <template> tag which defines
the contents of update to be made.

33

https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events

Listing 8 demonstrates the action types supported by Turbo Streams.

Listing 8. All supported Turbo Streams actions

<turbo-stream action="append" target="comments">
 <template>
 <li id="comment_1">
 This li will be appended to the element
 with the DOM ID "comments".

 </template>
</turbo-stream>

<turbo-stream action="prepend" target="comments">
 <template>
 <div>
 This div will be prepended to the element
 with the DOM ID "comments".
 </div>
 </template>
</turbo-stream>

<turbo-stream action="replace" target="comment_1">
 <template>
 <li id="comment_1">
 This li will replace the existing element
 with the DOM ID "comment_1".

 </template>
</turbo-stream>

<turbo-stream action="update" target="unread_count">
 <template>
 <!-- The contents of this template will replace the
 contents of the element with ID "unread_count" by
 setting innerHtml to "" and then switching in the
 template contents. -->
 1
 </template>
</turbo-stream>

34

<turbo-stream action="remove" target="comment_1">
 <!-- The element with DOM ID "comment_1" will be removed.
 The contents of this stream element are ignored. -->
</turbo-stream>

<turbo-stream action="before" target="current_step">
 <template>
 <!-- The contents of this template will be added before the
 the element with ID "current_step". -->
 New item
 </template>
</turbo-stream>

<turbo-stream action="after" target="current_step">
 <template>
 <!-- The contents of this template will be added after the
 the element with ID "current_step". -->
 New item
 </template>
</turbo-stream>

Multiple elements can be targeted using a CSS selector defined in the
targets attribute.

<turbo-stream action="append" targets="li.unread">
 <template>
 <div>
 This div will be appended to all
 li elements with the "unread" class
 </div>
 </template>
</turbo-stream>

Another great thing about Streams is that the method by which a <turbo-
stream> is added to the document doesn’t matter. For example, if we
wanted to update a Turbo Frame along with one specific element that’s
outside the Frame, a <turbo-stream> can be rendered within the Turbo

35

Frame returned by the server. When the Frame is updated, the stream will
be executed!

Custom Stream actions

In addition to the stock Turbo Stream actions, we can define custom actions
to do whatever we want. Let’s look at an example to add a CSS class to an
element.

import { StreamActions } from "@hotwired/turbo"

StreamActions.add_class = function() {
 let className = this.getAttribute("class")

 this.targetElements.forEach(e => {
 e.classList.add(className)
 })
}

In custom actions, this refers to StreamElement, which is the custom
element underpinning <turbo-stream>. The targetElements getter is
defined by this element.

The above action can be triggered as:

<turbo-stream action="add_class"
 targets="li.unread"
 class="is-unread">

Turbo Streams gives us a scalpel to make fine grained amendments to the
page as opposed to the more general approach of Turbo Drive and Frames.

2.1.4. Page refreshes using morphing

A common pattern in Rails is to redirect the user back to the page they were
on after a form submission. This usually happens after the user edits or

36

https://github.com/hotwired/turbo/blob/main/src/elements/stream_element.js
https://javascript.info/custom-elements
https://javascript.info/custom-elements

creates an entity, with the changes reflected in the UI after the redirect.

Redirecting triggers a full page load which resets the user’s scroll position
and the state of the entire page. In cases where this isn’t desirable, we add
some complexity on the server and render Turbo Streams to make localised
changes to the page.

Page refreshes using morphing is an alternative approach to this problem
which eliminates the additional complexity on the server. When using this
approach, the server redirects as it usually would after form submission. If
the redirect is back to the page’s current location, Turbo will fetch the page
again and morph the new page with the current one, meaning that only the
elements which have changed will be updated. The scroll position will also
be preserved.

Under the hood, Turbo uses idiomorph to execute the morphing[1].

Let’s see what this looks like in action.

A demo

Let’s say we have an index of posts on a page, each with a Delete button.

<!-- /posts -->
<h2>You have 21 posts</h2>

 <h3>My favourite albums of 2023</h3>
 <form method="delete" action="/post/1">
 <button type="submit">Delete</button>
 </form>

 <h3>Enter The Harmony Codex</h3>
 <form method="delete" action="/post/2">
 <button type="submit">Delete</button>

37

https://github.com/bigskysoftware/idiomorph

 </form>

 <!-- ... -->

When the user deletes a post, reloading the full page would reset their scroll
position and feel jarring. Alternatively, we could render Turbo Streams from
the server to remove just that post’s element and update the counter.
This would add complexity as we’d need to set a DOM ID on each
element and render a Turbo Stream template on the server to remove the
appropriate element and change the counter.

The complexity would increase dramatically if we had other bits of state
scattered around the page. This is the perfect use case for morphing. First
we need to opt into it using a <meta> tag.

<head>
 <!-- ... -->

 <!-- The refresh method can be `morph` or `replace` -->
 <meta name="turbo-refresh-method" content="morph">

 <!-- The scroll setting can be `preserve` or `reset` -->
 <meta name="turbo-refresh-scroll" content="preserve">
</head>

These are page-specific settings. Having two definitions allows us to control
the refresh method and scroll setting on refresh independently.

Now, on the server, we can simply redirect the user after deleting the post.

class PostsController < ApplicationController
 # ...

 def delete
 @post.destroy

38

 redirect_to posts_path
 end
end

Since we’ve opted into morphing on this page, and the redirect is back to the
current location, Turbo will use idiomorph to update the page. Hence, only
the counter will be updated and the appropriate post’s will be
removed.

The scroll position will also be retained making the user’s experience more
slick.

Turbo also provides a Stream Action to trigger a page refresh.

<turbo-stream action="refresh"></turbo-stream>

Morphing only works for full-page refreshes. It isn’t scoped to Turbo
Frames. Those will always be fully reloaded with one exception.

Turbo Frames and morphing

When a page that has opted into morphing contains remotely loaded Turbo
Frames (those with an src attribute), we can opt into morphing for those
Frames.

By default, they’ll be reloaded on a page refresh without morphing, but we
can reload them with morphing using refresh="morph".

<turbo-frame id="comments" src="/comments" refresh="morph">
</turbo-frame>

When the page is reloaded, this Frame will also be reloaded using morphing.

Inline Turbo Frames (without an src attribute) will be morphed like any
other element. Navigation within Turbo Frames doesn’t currently support
morphing so those will be reloaded as normal.

39

Put together, Turbo as a whole packs one hell of a punch and we can
accomplish an inordinate number of use cases without writing a single line
of JavaScript!

2.1.5. Turbo Native

Turbo Native consists of native libraries for iOS and Android that harness
the power of Turbo on mobile. It orchestrates a native web view through
different screens within native navigation. This way, native components
such as tab bars can be used, but the same HTML views used on web are
leveraged to display content in the app.

Tapping a link in the app triggers a new native screen to be displayed with
the destination page giving the app a distinct native feel. The page
navigation is driven using Turbo and same web view instance is reused
across the different native screens so the performance is incredibly slick.

For cases where a web view doesn’t quite cut it, Turbo Native has an escape
hatch to display a fully native screen instead. We’ll dig deeper into this in
chapters ahead as it’s easier to understand when actually writing the code!

The Turbo documentation is available at https://turbo.hotwired.dev. We’ll
cover most of the functionality over the course of this book, but it’s worth
familiarising yourself with it. Documentation is your best friend!

2.2. Stimulus
Stimulus is a lightweight library to manipulate HTML with reusable pieces of
JavaScript logic encapsulated in a controller. Like Turbo, it’s written in
TypeScript.

Stimulus has an HTML-centric way of writing JavaScript. The markup is
connected to the controller using a range of data- attributes. Stimulus

40

https://turbo.hotwired.dev

controllers should ideally be reusable and generic.

Let’s look at a concrete use case. Say the visibility of an element needed to be
toggled on the click of a button. The HTML for this would be something like:

<article>
 <div>
 This is a thing.
 </div>

 <button>Toggle the thing!</button>
</article>

When the button is clicked, we want to hide or show the <div>. This entails
adding or removing a hidden class on the <div> which will hide it using
CSS. The above markup decorated with data- attributes to hook it up to a
Stimulus controller looks like:

<article data-controller="toggle">
 <div data-toggle-target="item">
 This is a thing.
 </div>

 <button
 data-action="click->toggle#toggleItem"
 data-toggle-class-value="hidden">
 Toggle the thing!
 </button>
</article>

The <article> is connected to a controller called toggle using data-
controller. This means the toggle controller’s scope is <article> and
it will only be able to "see" this element and what’s inside it.

The <div> whose class needs to be toggled is denoted as a target named
item using the data-toggle-target attribute. A target is an element that

41

needs to be operated upon in a Stimulus controller. It can be accessed using
this.[target name]Target. The pattern for a target attribute is:

data-[controller name]-target

Multiple elements in the controller’s scope can be decorated with the same
target name. They can all be accessed using this.[target
name]Targets.

On the <button>, we specify the controller method to trigger for a specified
event using data-action. In this case it’s triggering the toggleItem
method in the toggle controller on a click event. For <button>, the
default action event[2] is click so that can be omitted and the attribute
value becomes: toggle#toggleItem. But for demonstration purposes,
let’s be explicit. A data-action definition is of the form:

[event]->[controller name]#[method]

We’re also defining a value called class using data-toggle-class-
value. A value defines parameters that can be accessed within a Stimulus
controller using this.[value name]Value. Defining the CSS class to be
toggled as a value allows the controller to be generic and reusable in a
variety of contexts, not just to show or hide an element. A value attribute is
defined as:

data-[controller name]-[value name]-value

Values should be defined on the same element as data-controller.

Next, let’s write the controller. Rails creates an
app/javascript/controllers folder by default. It also creates files that
initialize Stimulus and register all the controllers. We’ll get into how all that
works when we write our first controller in Piazza. For now, let’s just say the
controller goes in a file called toggle_controller.js and that file needs

42

to be registered with the Stimulus application as below:

import { Application } from "@hotwired/stimulus"
const application = Application.start()

import ToggleController from "./toggle_controller"
application.register("toggle", ToggleController)

application.register defines controller’s name as toggle, which is
what we use in the HTML. The controller’s implementation is demonstrated
below:

import { Controller } from "stimulus"

export default class extends Controller {

 static targets = ["item"]
 static values = { class: String }

 toggle() {
 this.itemTarget.classList.toggle(this.classValue)
 }
}

Let’s unpack it to understand what it’s doing. We’ve defined a toggle()
method which is triggered by the <button> as defined in data-action.

toggle() {
 this.itemTarget.classList.toggle(this.classValue)
}

A single target called item in an array has been declared. This points to the
<div> decorated with data-toggle-target="item" and is available
within the controller using this.itemTarget.

43

static targets = ["item"]

We’ve also declared a value called class of type String. This is accessible
using this.classValue in the controller and will read or write the data-
toggle-class-value attribute defined in the HTML.

static values = { class: String }

In essence, that’s Stimulus! It lets you hook up pieces of logic to HTML
elements and provides an elegant API for interacting with attributes defined
in the DOM. It’s conceptually super simple but the complete API is
extremely powerful.

Other features include the Outlets API which provides a mechanism to
communicate between different Stimulus controllers; and the Classes API
makes it easy to work with utility CSS classes. Check out the docs for all the
details.

The Stimulus documentation is available at https://stimulus.hotwired.dev.
We’ll cover the basics in this book but to level up your knowledge, it’s totally
worth reading the docs!

2.3. Strada
Strada provides a way to send and receive messages from native code
encapsulated within Stimulus controllers. It consists of a JavaScript library
for the web, and Swift and Kotlin libraries for iOS and Android.

Strada provides a subclass of a Stimulus Controller called
BridgeComponent. This construct is the abstraction layer for message
passing. The native apps will have counterpart components written in native
code to receive and respond to web messages.

44

https://stimulus.hotwired.dev/reference/outlets
https://stimulus.hotwired.dev/reference/css-classes
https://stimulus.hotwired.dev
https://github.com/hotwired/strada-web
https://github.com/hotwired/strada-ios
https://github.com/hotwired/strada-android

Listing 9 demonstrates a basic component which sends a message to the
native app to render a link, and then handles the response when the native
component is clicked by clicking the web element.

Listing 9. A basic Strada web component

import { BridgeComponent, BridgeElement } from "@hotwired/strada"

export default class extends BridgeComponent {
 static component = "link"

 connect() {
 const title = new BridgeElement(this.element).title

 this.send("connect", { title }, response => {
 console.log(`Response: ${response}`)
 this.element.click()
 })
 }
}

The app can render the link in a platform specific way. It’s up to the
developer to handle the message from the web app in the appropriate way.

Strada also provides a BridgeElement helper class which encapsulates and
infers basic information such as the element’s title from the HTML. It also
provides an interface to data-bridge- HTML attributes which we can use
to define custom information.

We’ll dig into the specifics further in Chapter 7 as it’s easier to understand
when writing web and native code concurrently.

2.4. Conclusion
Over the course of this chapter, we’ve taken a tour of Hotwire’s constituent
libraries.

45

To recap, Turbo speeds up page navigation and form submissions by
eliminating the need for full-page reloads. It also enables updates of specific
portions of a page using Turbo Frames and small, targeted amendments
using Turbo Streams.

Stimulus provides the ability to hook up pieces of JavaScript logic to HTML
elements using data attributes, and an elegant API to access the data within
these attributes.

Strada standardises an interface to communicate between web and native
code allowing us to build hi-fidelity native UIs which are completely driven
by the web app.

Hotwire, when put together with a full-stack framework such as Rails packs
in the needs of the vast majority of applications and allows individuals or
small teams to develop apps at an incredible pace. Thanks to Hotwire, it’s
possible for a single developer to build and maintain an app for Web, iOS,
and Android without tying themselves into knots!

[1] Radan Skorić has written a great walkthrough of the Idiomorph algorithm: https://radanskoric.com/articles/turbo-morphing-
deep-dive-idiomorph.

[2] The full list of default events for the various elements can be found here: https://stimulus.hotwired.dev/reference/actions#event-
shorthand.

46

https://radanskoric.com/articles/turbo-morphing-deep-dive-idiomorph
https://radanskoric.com/articles/turbo-morphing-deep-dive-idiomorph
https://stimulus.hotwired.dev/reference/actions#event-shorthand
https://stimulus.hotwired.dev/reference/actions#event-shorthand

Chapter 3. Users and sign
ups
Now that we’ve set up our repositories and had a quick overview of Hotwire,
let’s get started with building Piazza!

What’s a web app without any users? We’ll start by building a sign up form
enabling new users to create an account on Piazza. This will be followed up
by building an authentication system so users can log in and the application
can securely identify them.

The first step is creating the User and Organization models.

3.1. Modelling Users and Organizations
Users form one half of the backbone of our app. The other half is the oft
overlooked Organization. A User belongs to an Organization and all
domain resources belong to the Organization instead of the individual
User.

More often than not, the concept of organizations is considered to be out of
scope for MVPs[1], usually with good reason. Management of organization
members, the designation of roles and permissions, and an invitation
system to join an organization are all essential and non-trivial features.

In the context of the domain model however, it’s critical to have the concept
of an Organization. Otherwise, all the resources and permissions would
be built around an individual User.

Why use the term "Organization"?

A variety of terms such as Team, Company, or Account could be used

47

to name this concept. The problem is that those can sometimes
interfere with the business domain. For example, if we named this
concept Team, and we’re building a Fantasy Football app, we’d want the
Team model to represent a football team and not a team of users. To
avoid such confusion, I believe Organization is the most appropriate
term for this concept[2].

This is not a rule by any means. Depending on your context, you may
wish to use another term. It’s just worth thinking about whether that
term could ever cause confusion in your app in the future.

Hypothetically, if we took this User centric approach initially and
somewhere down the line we wanted to implement organizations in the app,
the entire domain model would need to be reworked. All resources would
have to be altered to belong to an Organization rather than a User. Not to
mention the vast changes to application logic, all of which would be written
with the assumption that resources belong to a User. It becomes a massive
refactor and not just a new feature[3].

Even though we won’t be building any UI to manage an organization in
Piazza, building it into the domain model future proofs the app.

But does a two sided marketplace need organizations?

YES. What if a local shop starting listing their items and they wanted
their employees to be able to post and manage their listings? What if
Piazza expanded into more of an eBay style marketplace in the future
and businesses started both buying and selling using it? Every single
app could potentially grow to require organizations. It’s prudent to build
it into the domain model from day 1, even if it isn’t reflected in the UI.

A good rule of thumb is that the User should be used solely for
authentication and the only entities associated with it should be specific
to that particular human; for example, their preferences. EVERYTHING

48

else should belong to an Organization.

Before starting a feature, it’s wise to create and work on a different branch.

$ git checkout -b users-and-sign-ups

3.1.1. Model classes and database tables

A User should be able to belong to many Organizations and an
Organization should be able to have many Users. This means there’s a
many-to-many association between these two models which requires a join
table and corresponding model. This model will be named Membership.

Generate[4] the models and database migrations for these entities.

Listing 10. Using the Rails generator to generate the models and migrations

$ bin/rails g model User name:string email:string:uniq
password_digest:string
$ bin/rails g model Organization
$ bin/rails g model Membership user:references
organization:references

As Listing 10 demonstrates, the User model has 3 string fields for the
name, email and password_digest. Storing the password as plain text is
a security flaw in case anyone is able to gain unauthorized access to the
database, so it’s stored in the form of a secure digest generated using a
library called bcrypt. We’ve also created a unique index for the email field
so duplicate users cannot be created.

The Organization model doesn’t have any fields because it won’t be used
in the UI or contain any business logic in the scope of this book. It’s there for
future proofing and fields can be added when the time comes!

Lastly, the Membership model has foreign key references to the User and
Organization and its singular purpose is to link these two models. In the

49

future, if needs dictate, this model can be expanded to contain information
such as which role a User performs within an Organization. That’s also
out of scope for this book.

Run the database migrations to create the tables.

$ bin/rails db:migrate

The generators will have created some fixture files containing test data that
is loaded into the database before every test run. The autogenerated data
will cause errors so clear out these files for now. We’ll add test data as and
when we need it. Clear the contents of these files:

• test/fixtures/users.yml

• test/fixtures/organizations.yml

• test/fixtures/memberships.yml

3.1.2. Validations and relationships

Now that the models are in place, let’s add some validations and the
relationships to mirror the database foreign keys.

The user must have a name and a valid unique email so these attributes
need to be validated. For name, a simple presence check will suffice but the
email will be validated against a built-in regex.

This is pretty clear cut logic so let’s start with a few tests as shown in Listing
11.

Listing 11. Model tests for name and email validation
(test/models/user_test.rb)

class UserTest < ActiveSupport::TestCase
 test "requires a name" do
 @user = User.new(name: "", email: "johndoe@example.com")
 assert_not @user.valid?

50

 @user.name = "John"
 assert @user.valid?
 end

 test "requires a valid email" do
 @user = User.new(name: "John", email: "")
 assert_not @user.valid?

 @user.email = "invalid"
 assert_not @user.valid?

 @user.email = "johndoe@example.com"
 assert @user.valid?
 end

 test "requires a unique email" do
 @existing_user = User.create(
 name: "John", email: "jd@example.com"
)
 assert @existing_user.persisted?

 @user = User.new(name: "Jon", email: "jd@example.com")
 assert_not @user.valid?
 end
end

Running these tests will fail as we haven’t written any application code as
yet.

Listing 12. RED

$ bin/rails test

Write the application code to make the tests pass as shown in Listing 13.

Listing 13. Validating the name and email for a user (app/models/user.rb)

class User < ApplicationRecord

51

 validates :name, presence: true
 validates :email,
 format: { with: URI::MailTo::EMAIL_REGEXP },
 uniqueness: { case_sensitive: false }
end

The test suite will now be green!

Listing 14. GREEN

$ bin/rails test

Now let’s set up the relationships between the models to mirror the foreign
keys in the database. Listing 15, Listing 16 and Listing 17 show the additions
for each of the models.

Listing 15. A User has many Organizations (app/models/user.rb)

class User < ApplicationRecord
 # ...

 has_many :memberships, dependent: :destroy
 has_many :organizations, through: :memberships
end

The dependent: :destroy option for the memberships relation in
Listing 15 is specified so the corresponding Membership is deleted when a
User is deleted. We’ll do the same for Organization in Listing 16.

Listing 16. An Organization has many Users
(app/models/organization.rb)

class Organization < ApplicationRecord
 has_many :memberships, dependent: :destroy
 has_many :members, through: :memberships, source: :user
end

52

In Listing 16, the relation to User is defined as has_many :members
because @organization.members reads better than
@organization.users. The source: :user option tells ActiveRecord to
use the user_id foreign key for this relation.

Listing 17. A Membership belongs to a User and an Organization
(app/models/membership.rb)

class Membership < ApplicationRecord
 belongs_to :user
 belongs_to :organization
end

3.1.3. Strip extraneous spaces

A common mistake people make when filling web forms is to accidentally
include a space at the start or end of a field. This isn’t always an issue, but in
an email address, an unwanted space can cause all kinds of problems.

We can use the normalizes method provided by Active Record to strip
extraneous spaces. Let’s start with a test once again.

Listing 18. Model tests for removal of extraneous spaces RED
(test/models/user_test.rb)

class UserTest < ActiveSupport::TestCase
 # ...

 test "name and email is stripped of spaces before saving" do
 @user = User.create(
 name: " John ",
 email: " johndoe@example.com ",
)

 assert_equal "John", @user.name
 assert_equal "johndoe@example.com", @user.email
 end

53

https://api.rubyonrails.org/classes/ActiveRecord/Normalization/ClassMethods.html#method-i-normalizes

end

Listing 19. Normalizing the name and email GREEN (app/models/user.rb)

class User < ApplicationRecord
 # ...

 normalizes :name, with: -> (name) { name.strip }
 normalizes :email, with: -> (email) { email.strip.downcase }
end

3.1.4. Secure passwords

As touched on earlier, the password needs to be stored securely in the
database in the form of a digest. Rails provides a helper called
has_secure_password to do exactly this. Before it can be used, the
bcrypt gem used to compute the digest needs to be added to the project.

Open up your Gemfile. It should be there as a comment.

Listing 20. Uncomment bcrypt in the Gemfile (Gemfile)

...

Use Active Model has_secure_password
gem "bcrypt", "~> 3.1.7"

...

Install bcrypt.

$ bundle install

Along with securing the password, we’ll also add a validation to check its
length and presence. We’ll set a minimum of 8 characters for security
reasons.

54

Once again, let’s start with tests as shown in Listing 21.

Listing 21. Testing password validation RED (test/models/user_test.rb)

class UserTest < ActiveSupport::TestCase
 # ...

 test "password length must be between 8 and ActiveModel's maximum"
do
 @user = User.new(
 name: "Jane",
 email: "janedoe@example.com",
 password: ""
)
 assert_not @user.valid?

 @user.password = "password"
 assert @user.valid?

 max_length =
 ActiveModel::SecurePassword::MAX_PASSWORD_LENGTH_ALLOWED
 @user.password = "a" * (max_length + 1)
 assert_not @user.valid?
 end
end

Next, let’s go back to the User model and add the password validation and
has_secure_password directive to ensure it’s stored securely. The
maximum length validation is added automatically by Rails so that doesn’t
need to be defined.

Listing 22. Securing and validating the password (app/models/user.rb)

class User < ApplicationRecord
 # ...

 before_validation :strip_extraneous_spaces

 has_secure_password

55

 validates :password,
 presence: true,
 length: { minimum: 8 }

 private

 # ...
end

has_secure_password packs in a lot with a single line of code. It expects
a password_digest column in the database (another name can be
specified, more on this later) and transparently hashes a password when it’s
passed in while creating or updating a User!

Now let’s run the test suite again. It’s still RED!

Listing 23. The test suite shows 2 failures. RED

$ bin/rails test

The tests checking for a valid name and email address are no longer passing.
This is because we’ve added a new validation for a password, which isn’t
being passed in when creating a User in those tests. That’s straightforward
enough to fix.

Listing 24. Fix the test failures caused by password validation GREEN
(test/app/user_test.rb)

class UserTest < ActiveSupport::TestCase
 test "requires a name" do
 @user = User.new(
 name: "",
 email: "johndoe@example.com",
 password: "password"
)
 assert_not @user.valid?

 @user.name = "John"

56

 assert @user.valid?
 end

 test "requires a valid email" do
 @user = User.new(
 name: "John",
 email: "",
 password: "password"
)
 assert_not @user.valid?

 @user.email = "invalid"
 assert_not @user.valid?

 @user.email = "johndoe@example.com"
 assert @user.valid?
 end

 test "requires a unique email" do
 @existing_user = User.create(
 name: "John",
 email: "jd@example.com",
 password: "password"
)
 assert @existing_user.persisted?

 @user = User.new(
 name: "Jon",
 email: "jd@example.com",
 password: "password"
)

 assert_not @user.valid?
 end

 # ...
end

Now’s also a good time to commit your code.

57

$ git add .
$ git commit -m "Set up user, organization, and membership models"

3.2. Rails and I18n
Before building the sign up form, let’s take a slight detour and discuss
internationalization (I18n) and localization (L18n). Piazza will be
internationalized from the get-go. This means that all user facing text will be
abstracted out of our application and into locale dictionaries so the
application can be served in multiple languages.

We’ll be building in English in this book, but if Piazza ever needed to be
translated into another language, all that would need doing is to get the text
translated, drop it into the app and make some minor configuration
changes!

Internationalizing from day 1 has other advantages as well. It keeps all user
facing text out of the controllers and views making it easier to see the wood
for the trees. While writing tests, we can assert for the key in the locale
dictionary rather than the text itself meaning the tests are robust when user
facing text changes. I18n is a minor trade-off that can pay dividends in the
future.

I18n in Rails is provided by the Ruby I18n gem. All Rails apps have a basic
I18n setup out of the box. The user facing text is placed in YAML files in the
config/locales/ folder with the language’s ISO code as the root key.

Listing 25. An example of a locale dictionary

en:
 hello: Hello World!
 goodbye: Goodbye.

These strings can be referenced in code using the translate method, or
the shorthand t.

58

https://github.com/ruby-i18n/i18n
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

I18n.translate "hello"
=> Hello World!
I18n.t "goodbye"
=> Goodbye.

Conceptually, that’s all there is to it! I18n uses :en as the default locale so
that doesn’t need configuration until more languages are added[5].

3.2.1. Localized strings in views and controllers

The key for a localized string can be inferred from context when t is called
in a controller or view. For example, to show a success flash message, we’d do
something like Listing 26.

Listing 26. Referencing a localized string using an inferred key

class UsersController < ApplicationController
 def create
 # ...

 redirect_to home_path, notice: t(".success")
 end
end

You’ll notice the I18n module doesn’t need to be specified when calling t in
a controller or view.

You’ll also notice the key has a . prefix. This tells Rails to infer the full key
from context and it will expand to "users.create.success". By
convention, the name of the controller and action separated by a . is
prepended to the supplied key. The same logic applies in view files as well.
This way, key names remain succinct!

3.2.2. Localization in Active Record

Active Record attributes are often used in the UI in Rails. For example, a

59

typical Rails form looks something like:

<%= form_with(model: @user) do |form| %>
 <%= form.label :name %>
 <%= form.text_field :name %>

 <%= form.label :email %>
 <%= form.email_field :email %>
<% end %>

name and email are attributes on the User model. One way to localize these
terms is to explicitly pass in a value:

<%= form.label :name, value: t(".name") %>

But this approach will lead to duplication in the locale dictionaries and be
tedious to manage. There’s a better way. Active Record has built in
localization features for model attributes and even the model name itself.
Translations can be stored under the activerecord key and will be picked
up by translation methods.

Let’s say we wanted to surface the User model as "Person" in the UI and
localize all its attributes. The locale dictionary would look like:

en:
 activerecord:
 models:
 user: Person
 attributes:
 user:
 name: Name
 email: Email
 password: Password

The below methods can be used to access these translations:

60

User.model_name.human
=> Person

User.human_attribute_name(:name)
=> Name

That’s how Active Record hooks directly into localization and no extra code
is needed to localize the models and their attributes. The form helpers
conveniently use these translation methods behind the scenes!

This technique is also handy when the user facing value of a model or
attribute is different from what it’s called in the database.

3.2.3. Folder structure for locale dictionary

As mentioned earlier, the locale dictionaries go in the config/locales/
folder. Theoretically, we could put all the strings in one massive file, but
that’d make it impossible to maintain. Rails does not enforce any structure
in this case, so it’s prudent to follow some basic rules for organization.

Taking inspiration from the folder structure under app/, we’ll create two
folders called views and models under config/locales/. In these
folders, we’ll create subfolders for each model or controller, and within
those we’ll create .yml files for each language. As an example, for a User
model and a UsersController, the folder structure would look like
Listing 27.

Listing 27. A demo of the folder structure for locale dictionaries

locales/
|- models/
|-- user/
| |-- en.yml
| |-- de.yml
|- views/
|-- users/
| |-- en.yml

61

| |-- de.yml

Don’t worry if this is a bit confusing right now. It’ll become clearer as we go
along.

3.2.4. Localizing the page title

Let’s put some of the above ideas straight into practice by extracting the
page title into a locale dictionary. Firstly, Rails has a default placeholder
locale dictionary file, but we don’t want that so get rid of it.

$ rm config/locales/en.yml

Each page will optionally supply its own title to help with SEO and
accessibility but we’ll include a default as well. To facilitate this, we’ll use the
content_for helper.

Additionally we’ll define a helper of our own to format the title. This appears
in Listing 28.

Listing 28. A helper to assemble the page title
(app/helpers/application_helper.rb)

module ApplicationHelper
 def title
 return t("piazza") unless content_for?(:title)

 "#{content_for(:title)} | #{t("piazza")}"
 end
end

Let’s write a test for this helper as well.

Listing 29. Create the test file

$ touch test/helpers/application_helper_test.rb

62

Listing 30. Testing the helper for the page title RED
(test/helpers/application_helper_test.rb)

require 'test_helper'

class ApplicationHelperTest < ActionView::TestCase
 test "formats page specific title" do
 content_for(:title) { "Page Title" }

 assert_equal "Page Title | #{I18n.t('piazza')}", title
 end

 test "returns app name when page title is missing" do
 assert_equal I18n.t('piazza'), title
 end
end

The test will fail as we haven’t defined the localized string as yet.

In the previous section, we discussed a folder structure for locale
dictionaries based around models and views. The default page title doesn’t
belong such a context though, it’s global across the app. This is why the
translation key is not prefixed with a ..

This string belongs in a file for globals. Create this file by running the
commands in Listing 31 and then fill it in with Listing 32.

Listing 31. Create a locale dictionary for globals

$ mkdir config/locales/globals
$ touch config/locales/globals/en.yml

Listing 32. Add the translation for Piazza
(config/locales/globals/en.yml)

en:
 piazza: Piazza

63

The tests should now pass.

Listing 33. GREEN

$ bin/rails test

Restart the Rails server so it picks up the new locale dictionary. Amend the
application layout to use this helper.

Listing 34. Using the new title helper
(app/views/layouts/application.html.erb)

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <%= csrf_meta_tags %>
 <%= csp_meta_tag %>

 <%# ... %>
 </head>

 <%# ... %>
</html>

The result can’t be seen just yet as we haven’t created any views or
controllers. That’s up next!

3.3. The sign up form
We’re now ready to write some UI code so we can actually see some of the
fruits of our work. As mentioned in Chapter 1 we’ll use Bulma for our CSS.
Bulma is an intuitive class-based framework so we won’t focus on it in this
book.

The class names are descriptive but should you need further clarification,
the Bulma documentation is fantastic!

64

http://bulma.io
https://bulma.io/documentation/

3.3.1. Setting up the routes, controllers, and views

The first thing we need is a UsersController along with actions to show
the sign up form and handle the submission. Piazza’s homepage will be a
feed of product ads. We’ll get into the specifics later but let’s also create a
FeedController. The user will be redirected to the feed after signing up.
Run the below commands to create the controllers, actions, and views:

$ bin/rails g controller Users new create
$ bin/rails g controller Feed show

The generator will create a app/views/users/create.html.erb file
that isn’t needed.

$ rm app/views/users/create.html.erb

Next, the routes to these controller actions need to be configured. The root
path will be the show action in FeedController. For the sign up form, it’s
good to have a user friendly path, so we’ll serve it from /sign_up rather
than the conventional /users/new. Open routes.rb and replace its
contents with Listing 35.

Listing 35. The routes for the sign up form (config/routes.rb)

Rails.application.routes.draw do
 root "feed#show"

 get "sign_up", to: "users#new"
 post "sign_up", to: "users#create"
end

If you visit http://localhost:3000/ and http://localhost:3000/
sign_up in your web browser, you should see a bit of text with the location
of the view file. We’re up and running!

65

http://localhost:3000/
http://localhost:3000/sign_up
http://localhost:3000/sign_up

Building out the form

Figure 19 shows a wireframe of the sign up form.

Figure 19. A wireframe of the sign up form

Based on the wireframe, we can write the markup for the form as shown in
Listing 36.

Listing 36. The markup for the sign up form
(app/views/users/new.html.erb)

<% content_for :title, t(".title") %>

<layout-columns class="columns is-centered">
 <layout-column class="column box is-5 mt-6 p-5 m-4">
 <h1 class="title has-text-centered">
 <%= t(".title") %>
 </h1>
 <%= form_with(
 model: @user,

66

 url: sign_up_path,
 class: "is-flex is-flex-direction-column"
) do |form| %>
 <div class="block">
 <%= form.label :name, class: "label" %>
 <%= form.text_field :name, class: "input" %>
 </div>

 <div class="block">
 <%= form.label :email, class: "label" %>
 <%= form.email_field :email, class: "input" %>
 </div>

 <div class="block">
 <%= form.label :password, class: "label" %>
 <%= form.password_field :password, class: "input" %>
 </div>

 <%= form.submit t(".sign_up"),
 class: "button is-primary is-large
 is-align-self-flex-end mb-3 mt-3" %>
 <% end %>
 </layout-column>
</layout-columns>

This code won’t work as the @user instance variable used to build the form
hasn’t been defined in the controller. We’re also using a couple of localized
strings which don’t exist in the locale dictionary.

A quick sidebar on semantic HTML tags

You may have noticed the layout-columns and layout-column tags
in Listing 36. These are semantic HTML tags. HTML supports any
custom tags as long as they contain a -. They don’t need to be defined
or registered anywhere and all their layout behavior comes from the
classes attached to them. I consider it good practice to use semantic
HTML tags wherever possible so the markup doesn’t become a

67

unwieldy bowl of div soup[6].

This kind of custom tags are primarily used for JavaScript custom
elements, but there’s no compulsion for that. Custom tags can be used
to make HTML read better and we’ll be doing that throughout this book.

Moving on to the UsersController, implement the two actions as shown
in Listing 37.

Listing 37. The controller actions for sign ups
(app/controllers/users_controller.rb)

class UsersController < ApplicationController
 def new
 @user = User.new
 end

 def create
 @user = User.new(user_params)

 if @user.save
 @organization = Organization.create(members: [@user])
 # TODO: Log in user...

 redirect_to root_path,
 status: :see_other,
 flash: { success: t(".welcome", name: @user.name) }
 else
 render :new, status: :unprocessable_entity
 end
 end

 private
 def user_params
 params.require(:user).permit(:name, :email, :password)
 end
end

68

https://javascript.info/custom-elements
https://javascript.info/custom-elements

The new action initializes a new instance of User to build the sign up form.
The create action creates a new User from sanitized parameters along
with a companion Organization. In the next chapter, we’ll build an
authentication and login system, so a TODO comment marks where the login
logic will go.

HTTP statuses for redirects and errors

You’ll notice in Listing 37, the response status for both redirect_to
and render in the create action is explicitly defined. These are
required by Turbo. All form submissions must redirect with a 303 See
Other if nothing goes wrong, or render with a 4xx or 5xx if something
does.

For redirects, Rails uses 302 Found by default. The specification for
this response[7] states that the redirected request should use the same
HTTP method as the original request. Due to legacy reasons, the fetch
(used by Turbo under the hood) implementation in most browsers will
respond to a 302 Found response from a POST request by issuing a
GET request to the redirected path. For all other HTTP methods, it will
use the same method as the original request when redirecting.
Responding with a 303 See Other status ensures that the method
used for the redirect is always GET.

This anomaly with redirect codes isn’t a massive problem in Rails
because Rails forms use the only two browser native methods: GET and
POST. Forms with different methods are rendered to use POST with the
method inserted as a hidden field which is then parsed by Rails before
the request hits a controller. This could potentially change as Rails
integrates more tightly with Turbo and it’s best to follow HTTP
conventions anyway. In this book we’ll specify the redirect status as
303 See Other when the redirected request is expected to be a GET.

More information is available in the Turbo docs:
https://turbo.hotwired.dev/handbook/drive#redirecting-after-a-form-

69

https://javascript.info/fetch
https://turbo.hotwired.dev/handbook/drive#redirecting-after-a-form-submission

submission

Next, let’s put in the localized strings used in the sign up form. As discussed
in Section 3.2.3, create the locale dictionary files for the User model and
UsersController:

$ mkdir config/locales/models
$ mkdir config/locales/views
$ mkdir config/locales/models/user
$ mkdir config/locales/views/users

$ touch config/locales/models/user/en.yml
$ touch config/locales/views/users/en.yml

Then insert the user facing strings in those files as shown in Listing 38 and
Listing 39.

Listing 38. The locale dictionary for the sign up form
(config/locales/views/users/en.yml)

en:
 users:
 new:
 title: Sign up for Piazza
 sign_up: Sign up!
 create:
 welcome: "Welcome to Piazza, %{name}"

Listing 39. An empty model locale dictionary for future use
(config/locales/models/user/en.yml)

en:

We’ve put in the two strings that we’re using in the sign up form, as well as
the flash message shown after a successful sign up. The latter case also
demonstrates how to interpolate values in localized strings.

70

https://turbo.hotwired.dev/handbook/drive#redirecting-after-a-form-submission

Restart your Rails server so it picks up the newly created locale dictionaries.
Then visit http://localhost:3000/sign_up and you’ll see the shiny
new sign up form as shown in Figure 20.

Figure 20. The Sign Up form

Go ahead and fill it with some valid data and you’ll be redirected to the root
path. But hang on, where the welcome message? We’ve stored it in the
flash but it still needs to be rendered in the UI.

Rendering flash messages

Rails' flash mechanism is used to render alerts throughout the app, so it
belongs in the main application.html.erb layout file.

Listing 40. Render a partial with flashes in the application layout
(app/views/layouts/application.html.erb)

<!DOCTYPE html>
<html>
 <%# ... %>

 <body>
 <%= render "application/flashes" %>

71

http://localhost:3000/sign_up

 <main>
 <%= yield %>
 </main>
 </body>
</html>

Next, create and fill in the flashes partial.

$ mkdir app/views/application
$ touch app/views/application/_flashes.html.erb

Listing 41. The flashes partial
(app/views/application/_flashes.html.erb)

<%# locals: () -%>

<div class="container is-fluid" data-turbo-temporary>
 <% flash.each do |level, message| %>
 <%= tag.div \
 class: "notification is-#{level} is-light
 has-text-centered mt-4" do %>
 <%= message %>
 <% end %>
 <% end %>
</div>

Strict locals in partials

Rails 7.1 introduced a mechanism to explicitly define the local variables
used by a partial.

A magic comment at the top of a partial’s file defines which variables it
accepts and optional default values for them.

Local variables can be explicitly defined as:

72

https://guides.rubyonrails.org/action_view_overview.html#strict-locals

<%# locals: (name:, position:, last_signed_in:) -%>

A default value can also be specified:

<%# locals: (name:, position:, last_signed_in: nil) -%>

Or we can disallow all local variables:

<%# locals: () -%>

You can see this in action in Listing 41.

This mechanism is great for preventing bugs as well as documentation.
Passing in variables not explicitly defined will raise an error, as will
omitting required variables.

Using them is optional, but in this book we’ll use them at every
available opportunity as it makes the app more robust.

data-turbo-temporary is specified on the container element to prevent
Turbo from caching the alert during navigation. Without this attribute, users
will see the alert for a fraction of a second before it disappears if they
navigate back to a page with a flash after having navigated away due to
Turbo’s local cache.

Now if you go back to your sign up form and submit it with some valid data,
you’ll see an alert as depicted in Figure 21.

73

Figure 21. A successful sign up

The form works great with valid data, but what about invalid data?

3.3.2. Rendering form input errors

Every web app should be designed to cater for unexpected and invalid user
input. Signing up for Piazza with a duplicate email or a password shorter
than 8 characters should result in an error. But right now, nothing happens.
Well, almost nothing.

If you submit the form with a password that’s too short and then view the
HTML source, you’ll see Listing 42 when inspecting the password field.

Listing 42. The HTML after submitting an invalid form

<div class="block">
 <div class="field_with_errors">
 <label class="label" for="user_password">Password</label>
 </div>
 <div class="field_with_errors">
 <input class="input" type="password" name="user[password]"
id="user_password">
 </div>

74

</div>

Rails has wrapped the fields that contain errors in a <div> with the class
field_with_errors. Rendering errors in this way doesn’t work for us
because Bulma has no concept of field_with_errors. It uses a class
called is-danger to denote errors, so we need to modify the default
behavior for form errors.

ActionView::Base has a field_error_proc field that can be set to
customize the output of form fields that contain errors. The best place to do
this is in an initializer that goes in config/initializers/. Every file in
this folder is executed when Rails boots. Create a new file in that folder:

$ touch config/initializers/form_errors.rb

The field_error_proc is executed within the context of the
ActionView::Base instance, meaning we can render a partial inside it.

Listing 43. Customize the output of form fields with errors
(config/initializers/form_errors.rb)

ActionView::Base.field_error_proc = proc do |html_tag, instance|
 render "application/form_errors",
 html_tag: html_tag, instance: instance
end

Create the partial and fill it in with Listing 44.

$ touch app/views/application/_form_errors.html.erb

Listing 44. The partial for form errors
(app/views/application/_form_errors.html.erb)

<%# locals: (html_tag:, instance:) -%>

75

<% unless html_tag =~ /^<label/ %>
 <% field_html = Nokogiri::HTML::DocumentFragment.parse(html_tag) %>
 <% field_html.children.add_class("is-danger") %>

 <%== field_html %>
 <p class='help is-danger'>
 <%= instance.error_message.to_sentence %>
 </p>
<% else %>
 <%= html_tag %>
<% end %>

Let’s go through this process step-by-step.

The field_error_proc will be called by the form builder (by default, an
instance of ActionView::Helpers::FormBuilder) when rendering a
field containing an error. Two arguments are passed to it which are also
passed through to the partial in Listing 44.

The first is the complete HTML tag for the field that has an error. For
example, if the password field had an error, the below string would be
passed as the html_tag:

"<input class='input' type='password' name='user[password]'
id='user_password'>"

The second argument is an instance of the field from the FormBuilder for
the form, which is a subclass of ActionView::Helpers::Tags::Base.
For a password field, it will be an instance of
ActionView::Helpers::Tags::PasswordField.

Knowing the information that’s passed to the partial, we can move on to the
implementation. This proc is called for the problematic attribute’s <label>
as well as <input>. The error needs to be shown only on the <input>, so
using a regex test, the <label> is ignored.

For all other tags, the is-danger class needs to be added for Bulma to

76

render it in an error state. Using a library called Nokogiri[8] which is
included in Rails, we parse and manipulate the HTML.

<% field_html = Nokogiri::HTML::DocumentFragment.parse(html_tag) %>
<% field_html.children.add_class("is-danger") %>
<%== field_html %>

Using <%== instead of <%= prevents the HTML from being escaped so it
executes and doesn’t render on screen as code.

We also need to render the error message. This is available on the
instance passed to the partial, so we wrap it in a <p> tag and render it out.

<p class='help is-danger'>
 <%= instance.error_message.to_sentence %>
</p>

Restart your Rails server so this initializer is executed. Then submit the sign
up form with invalid data again and you’ll see errors being rendered on
screen.

Figure 22. Error messages in forms

77

Customizing Active Record error messages

The error messages seen in the form come from Active Record. They’re
generated when model validations are not satisfied. As such, they can be
customized or localized in the same way as Active Record model or attribute
names.

The easiest way to determine the key for any given string is to use a gem
called i18n-debug. It logs the locale key for every string rendered in a view
to the console.

Add this gem to the development group in your Gemfile as it’s not needed
outside the local environment.

Listing 45. Add i18n-debug to the Gemfile (Gemfile)

...

group :development do
 # ...

 gem "i18n-debug"
end

Then run:

$ bundle install

Restart your Rails server and once again submit the form with a password
that’s too short. In the server logs in your Terminal, you’ll see the locale keys
of every string rendered in the view.

Looking closely at these keys, you’ll see:
en.activerecord.errors.models.user.attributes.password.to
o_short. This is the key to localize the message for a short password error.
Go ahead and do that as shown in Listing 46.

78

Listing 46. A localized error message
(config/locales/models/user/en.yml)

en:
 activerecord:
 errors:
 models:
 user:
 attributes:
 password:
 too_short: must be at least 8 characters long

Once again, submit the form with a password that’s too short, you’ll see the
new error message.

Figure 23. The new custom error message

3.3.3. Controller testing

With the sign up flow is in place, it’s a good idea to wrap it in some controller
tests. These tests are focused on a single controller and make HTTP requests
to a path and assert the responses.

79

But shouldn’t we write the tests first?

Perhaps. If we were staunchly following Test Driven Development
(TDD). This is a polarizing topic and a lot of people have strong
opinions on when tests should be written. Personally, I struggle to write
tests first when the picture of the application code isn’t completely clear
in my head. For example, when I’m hacking away on a new problem.

In this book we’ll write tests first on some occasions when the
application behavior is clear and other times we’ll write the tests after
the application code.

When you’re working on your own projects, I recommend finding a
method that works for you and following that. Writing tests is essential.
When you write them is irrelevant.

For the UsersController we’ll test that the sign up form can be submitted
successfully and shows errors for invalid data.

The Rails generator will have generated a couple of placeholder tests. Clear
out their contents and replace them with Listing 47 and Listing 48.

Listing 47. Controller tests for the sign up flow GREEN
(test/controller/users_controller_test.rb)

require "test_helper"

class UsersControllerTest < ActionDispatch::IntegrationTest
 test "redirects to feed after successful sign up" do
 get sign_up_path
 assert_response :ok

 assert_difference ["User.count", "Organization.count"], 1 do
 post sign_up_path, params: {
 user: {
 name: "John",
 email: "johndoe@example.com",

80

 password: "password"
 }
 }
 end

 assert_redirected_to root_path
 follow_redirect!
 assert_select ".notification.is-success",
 text: I18n.t("users.create.welcome", name: "John")
 end

 test "renders errors if input data is invalid" do
 get sign_up_path
 assert_response :ok

 assert_no_difference ["User.count", "Organization.count"] do
 post sign_up_path, params: {
 user: {
 name: "John",
 email: "johndoe@example.com",
 password: "pass"
 }
 }
 end

 assert_response :unprocessable_entity
 assert_select "p.is-danger",
 text:
 I18n.t
("activerecord.errors.models.user.attributes.password.too_short")
 end
end

Listing 48. Delete the placeholder tests for the FeedController
(test/controller/feed_controller_test.rb)

require "test_helper"

class FeedControllerTest < ActionDispatch::IntegrationTest

81

end

The two test cases in Listing 47 simulate the HTTP requests made when a
user submits the sign up form first with valid data and then with a password
that doesn’t meet the requirements.

You can also see how the text on the page is asserted using the locale key. If
the user facing text changes, the tests won’t break as they’re effectively
testing against a variable. Neat!

The full list of test actions available in controller tests are available in the
Rails docs: https://api.rubyonrails.org/classes/ActionDispatch/Integration/
RequestHelpers.html.

Assertion methods tailored for controller testing live in their own repository
called rails-dom-testing. The docs are available here:
https://www.rubydoc.info/gems/rails-dom-testing/.

3.4. Conclusion
That brings us to the end of this chapter! We’ve covered a lot of ground so
let’s recap what we’ve built so far.

1. Created the User, Organization and Membership models that form
the backbone of Piazza.

2. Added validations and tests to the above models.

3. Stored passwords securely in the database.

4. Discussed how I18n and L18n works in Rails and why it’s a good idea to
internationalize single language apps.

5. Built a sign up form and covered it with controller tests.

Commit and push your code. This will also trigger a deploy on Render, so
you can go to your app’s URL (visible in the Render dashboard) and play
around with your sign up form in a production setting!

82

https://api.rubyonrails.org/classes/ActionDispatch/Integration/RequestHelpers.html
https://api.rubyonrails.org/classes/ActionDispatch/Integration/RequestHelpers.html
https://github.com/rails/rails-dom-testing
https://www.rubydoc.info/gems/rails-dom-testing/

$ git add .
$ git commit -m "Complete sign up form"
$ git checkout main
$ git merge users-and-sign-ups
$ git push

3.4.1. Exercises

There are several exercises throughout this book. In most cases, the exercise
solutions are tangential to the main text, but sometimes they involve fixing a
failing test suite which is required to proceed with the text. I recommend
completing all exercises before proceeding.

1. Add a password confirmation field to the sign up form.
has_secure_password supports both a password and
password_confirmation parameter input and compares the two
before saving the record. This makes it trivial to add a password
confirmation field. Ensure a password mismatch error is shown to the
user if their passwords don’t match. Ensure you write a controller test for
this as well.

[1] MVP stands for Minimum Viable Product. More information is available here: https://www.agilealliance.org/glossary/mvp/.

[2] This article by Andrew Culver describes why "Organization" is the most appropriate term to use and why it’s essential in every
web app: https://blog.bullettrain.co/teams-should-be-an-mvp-feature/.

[3] In one of my previous jobs at a billion dollar startup, this refactor took several months and was a massive and challenging project
because the app had reached significant size and scale without the concept of organizations. All the resources were tied to individual
users and introducing a business offering meant refactoring all this code before even getting started with any new business facing
features. To avoid such scenarios, the initial added complexity of an Organization is a worthy trade-off!

[4] Rails has an incredibly convenient "generate" command that we’re using to create these models and database migrations, and will
be using throughout this book. The syntax can be hard to remember so I recommend using http://rails.help to generate the "generate"
commands!

[5] There’s a comprehensive Rails guide that covers all things I18n in Rails: https://guides.rubyonrails.org/i18n.html.

[6] For more information about semantic HTML tags, this excellent blog post from Jared White has the complete lowdown:
https://www.bridgetownrb.com/showcase/custom-html-elements-everywhere-for-page-layout/.

[7] More information about the 302 response is can be found in the MDN docs: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Status/302.

[8] Nokogiri is the most popular Ruby library for dealing with HTML. The complete docs are available here: https://nokogiri.org.

83

https://www.agilealliance.org/glossary/mvp/
https://blog.bullettrain.co/teams-should-be-an-mvp-feature/
http://rails.help
https://guides.rubyonrails.org/i18n.html
https://www.bridgetownrb.com/showcase/custom-html-elements-everywhere-for-page-layout/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/302
https://nokogiri.org

Thanks for for downloading
the preview.

To buy the book, go to
https://railsandhotwirecodex.com

Questions? Email me → ayush@radioactivetoy.tech

84

https://railsandhotwirecodex.com
mailto:ayush@radioactivetoy.tech

	The Rails and Hotwire Codex Preview
	Table of Contents
	Introduction
	How to read this book
	Prerequisites
	Hardware and Software

	What we’re going to build

	Chapter 1. Getting started
	1.1. The prerequisites
	1.2. Creating the Rails app
	1.3. Pushing to GitHub
	1.4. Deploying to production
	1.4.1. A production config for Puma

	1.5. Creating the iOS app
	1.6. Creating the Android app
	1.7. Conclusion

	Chapter 2. What is Hotwire?
	2.1. Turbo
	2.1.1. Turbo Drive
	2.1.2. Turbo Frames
	2.1.3. Turbo Streams
	2.1.4. Page refreshes using morphing
	2.1.5. Turbo Native

	2.2. Stimulus
	2.3. Strada
	2.4. Conclusion

	Chapter 3. Users and sign ups
	3.1. Modelling Users and Organizations
	3.1.1. Model classes and database tables
	3.1.2. Validations and relationships
	3.1.3. Strip extraneous spaces
	3.1.4. Secure passwords

	3.2. Rails and I18n
	3.2.1. Localized strings in views and controllers
	3.2.2. Localization in Active Record
	3.2.3. Folder structure for locale dictionary
	3.2.4. Localizing the page title

	3.3. The sign up form
	3.3.1. Setting up the routes, controllers, and views
	3.3.2. Rendering form input errors
	3.3.3. Controller testing

	3.4. Conclusion
	3.4.1. Exercises

	Thanks for for downloading the preview.

